Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion
نویسندگان
چکیده
BACKGROUND AND AIMS Crohn's disease (CD) ileal lesions are colonised by pathogenic adherent-invasive Escherichia coli (AIEC) producing outer membrane vesicles (OMVs) that contribute to the bacterial invasion process. In addition, increased expression of endoplasmic reticulum (ER)-localised stress response proteins, due to ER stress, is observed in patients with CD. The expression of the ER-localised stress response protein Gp96 in patients with CD and its biological role with regards to the ability of AIEC to invade intestinal epithelial cells were analysed. METHODS AND RESULTS Immunohistochemistry on tissue arrays showed that, together with CEACAM6 (carcinoembryonic antigen-related cell adhesion molecule 6) or the ER stress protein Grp78, Gp96 is also strongly expressed at the apical plasma membrane of the ileal epithelial cells of 50% of patients with CD. Invasion experiments in the presence of antibodies raised against Gp96, or after transfection of Intestine-407 cells with gp96 small interfering RNA (siRNA), indicated that Gp96 is essential to promote AIEC LF82 invasion, allowing, via the recognition of the outer membrane protein OmpA, OMVs to fuse with intestinal epithelial cells. CONCLUSIONS Gp96 is overexpressed on the apical surface of ileal epithelial cells in patients with CD and acts as a host cell receptor for OMVs, promoting AIEC invasion. From the results shown here, it is speculated that AIEC could take advantage of the abnormal expression of Gp96 in patients with CD to invade the ileal mucosa.
منابع مشابه
Investigation of adherent-invasive E. coli in patients with Crohn\'s disease
Background: Crohn's disease and Ulcerative colitis are known as inflammatory bowel disease with high morbidity which are as a result of increasing immune responses to intestinal microbiota in genetically susceptible individuals. The association of adherent invasive Escherichia coli with Crohn's disease in human has been discussed for decades. The principal aim of this study was to assess the re...
متن کاملCEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease.
The ileal mucosa of Crohn disease (CD) patients is abnormally colonized by adherent-invasive E. coli (AIEC) that are able to adhere to and invade intestinal epithelial cells. Here, we show that CD-associated AIEC strains adhere to the brush border of primary ileal enterocytes isolated from CD patients but not controls without inflammatory bowel disease. AIEC adhesion is dependent on type 1 pili...
متن کاملRegulation of the Expression of Chaperone gp96 in Macrophages and Dendritic Cells
The chaperone function of the ER-residing heat shock protein gp96 plays an important role in protein physiology and has additionally important immunological functions due to its peptide-binding capacity. Low amounts of gp96 stimulate immunity; high quantities induce tolerance by mechanisms not fully understood. A lack of gp96 protein in intestinal macrophages (IMACs) from Crohn`s disease (CD) p...
متن کاملPoint Mutations in FimH Adhesin of Crohn's Disease-Associated Adherent-Invasive Escherichia coli Enhance Intestinal Inflammatory Response
Adherent-invasive Escherichia coli (AIEC) are abnormally predominant on Crohn's disease (CD) ileal mucosa. AIEC reference strain LF82 adheres to ileal enterocytes via the common type 1 pili adhesin FimH and recognizes CEACAM6 receptors abnormally expressed on CD ileal epithelial cells. The fimH genes of 45 AIEC and 47 non-AIEC strains were sequenced. The phylogenetic tree based on fimH DNA sequ...
متن کاملGp96 deficiency affects TLR4 functionality and impairs ERK and p38 phosphorylation
Gp96 is an endoplasmic reticulum chaperone for multiple protein substrates. Its lack in intestinal macrophages of Crohn's disease (CD) patients is correlated with loss of tolerance against the host gut flora. Gp96 has been stablished to be an essential chaperone for Toll-like receptors (TLRs). We studied the impact of gp96-knockdown on TLR-function in macrophages. TLR2 and TLR4 expression was o...
متن کامل